SCiO “Pocket Molecular Scanner” Teardown

Some of you may remember the SCiO, originally a Kickstarter darling back in 2014 that promised people a pocket-sized micro spectrometer. It was claimed to be able to scan and determine the composition of everything from fruits and produce to your own body. The road from successful crowdsourcing to production was uncertain and never free from skepticism regarding the promised capabilities, but the folks at [Sparkfun] obtained a unit and promptly decided to tear it down to see what was inside, and share what they found.

The main feature inside the SCiO is the optical sensor, which consists of …read more http://pje.fyi/PXhgcf

Paul Jacob Evans

Anyone Need a Little Fuming Nitric Acid?

If there’s a chemical with a cooler name than “fuming nitric acid,” we can’t think of it. Nearly pure nitric acid is useful stuff, especially if you’re in the business of making rocket fuels and explosives. But the low-end nitric acid commonly available tops out at about 68% pure, so if you want the good stuff, you’ll have to synthesize fuming nitric acid yourself. (And by “good stuff”, we mean be very careful with the resulting product.)

Fuming nitric acid comes in two colors – red fuming nitric acid (RFNA), which is about 90% pure and has some dissolved nitrogen …read more http://pje.fyi/PTCbxz

Paul Jacob Evans

Sort Out Chemical Storage For Your Shop

There is one constant in the world of hardware hacker’s workshops, be they a private workshop in your garage or a public hackspace, and it goes something like this:

Everybody’s a safety expert in whatever it is they are working with, right up until the accident.

In other words, it is very tempting to harbour a cavalier attitude to something that either you are familiar with or the hazards of which you do not understand, and this breeds an environment in which mishaps become a distinct possibility.

As hardware people, we are familiar with basic tool safety or electrical safety. …read more http://pje.fyi/PT7jpt

Paul Jacob Evans

Go Small, Get Big: The Hack that Revolutionized Bioscience

Few people outside the field know just how big bioscience can get. The public tends to think of fields like physics and astronomy, with their huge particle accelerators and massive telescopes, as the natural expressions of big science. But for decades, biology has been getting bigger, especially in the pharmaceutical industry. Specialized labs built around the automation equipment that enables modern pharmaceutical research would dazzle even the most jaded CERN physicist, with fleets of robot arms moving labware around in an attempt to find the Next Big Drug.

I’ve written before on big biology and how to get more visibility …read more http://pje.fyi/PPnFNZ

Paul Jacob Evans

Graphene from Graphite by Electrochemical Exfoliation

Graphene is an interesting material, but making enough of the stuff to do something useful can be a little tough. That’s why we’re always on the lookout for new methods, like this electrochemical process for producing graphene in bulk.

You probably know that graphene is a molecular monolayer of carbon atoms linked in hexagonal arrays. Getting to that monolayer is a difficult proposition, but useful bits of graphene can be created by various mechanical and chemical treatments of common graphite. [The Thought Emporium]’s approach to harvesting graphene from graphite is a two-step process starting with electrochemical exfoliation. Strips of thin …read more http://pje.fyi/PNDq5Z

Paul Jacob Evans

Fluorescence Microscopy Meets DIY Fluid Management

Fluorescence microscopy is an optical technique that incorporates fluorescence or phosphorescence (as opposed to reflection and absorption) in order to study the properties of organic and inorganic substances. Not a stranger to bringing DIY techniques into the lab, [Philip] is using 3D printing resources to advance science and delight interns from labs everywhere.

In fluorescence microscopy, a huge limiting factor that decreases the amount of data that can be gleaned from a single sample is the number of targets that can be labeled with fluorescent tags. However, overlap in the spectral emissions of fluorophores limits the fluorophores that can be …read more http://pje.fyi/PJb8lq

Paul Jacob Evans

Self-assembling Polymers Support Silicone 3D Prints

We all know what the ultimate goal of 3D printing is: to be able to print parts for everything, including our own bodies. To achieve that potential, we need better ways to print soft materials, and that means we need better ways to support prints while they’re in progress.

That’s the focus of an academic paper looking at printing silicone within oil-based microgels. Lead author [Christopher S. O’Bryan] and team from the Soft Matter Research Lab at the University of Florida Gainesville have developed a method using self-assembling polymers soaked in mineral oil as a matrix into which silicone elastomers …read more http://pje.fyi/PBymqJ

Paul Jacob Evans